31 research outputs found

    Hunting for an EMC-like effect for antiquarks

    Full text link
    We argue that the Drell-Yan process in the xA0.15x_A \ge 0.15 kinematics recently studied at FNAL by the E906/SeaQuest experiment may allow to observe an analogous of the EMC effect for antiquarks. The effects of Fermi motion and energy loss are considered. The preliminary E906/SeaQuest data are inconsistent with the growth of the σA/AσN\sigma_A/A\sigma_N ratio expected in the Fermi motion scenario at xA0.25x_A \ge 0.25. The pattern of the xAx_A dependence of the ratio seems also inconsistent with a scenario in which the dominant nuclear effect is a suppression of the cross section due to the energy loss experienced by a quark of the projectile proton involved in the Drell-Yan process. All together the data suggest the possibility of a modification of the antiquark parton distributions in nuclei, with a pattern similar to the one observed in the EMC effect. We argue that optimal kinematics to look for an antiquark EMC-like effect would be to measure the σADY/AσNDY\sigma_A^{DY}/A\sigma_N^{DY} ratios for xAx_A = 0.2-0.4 and xpx_p \approx constant.Comment: 22 pages, 5 figure

    Parameter-free delineation of slope units and terrain subdivision of Italy

    Get PDF
    Abstract Quantitative geomorphological and environmental analysis requires the adoption of well–defined spatial domains as basic mapping units. They provide local boundaries to aggregate environmental and morphometric variables and to perform calculations, thus they identify the spatial scale of the analysis. Grid cells, typically aligned with a digital elevation model, are the standard mapping unit choice. A wiser choice is represented by slope units, irregular terrain partitions delimited by drainage and divide lines that maximise geomorphological homogeneity within each unit and geomorphological heterogeneity between neighbouring units. Adoption of slope units has the advantage of enforcing a strong relation with the underlying topography, absent in grid cell–based analyses, but their objective delineation is still a challenge. A given study area admits different slope unit maps differing in number and size of units. Here, we devise an objective optimisation procedure for slope units, suitable for study areas of arbitrarily large size and with varying terrain heterogeneity. We applied the new approach to the whole of Italy, resulting in a map containing about 330,000 slope unit polygons of different sizes and shapes. The method is parameter–free due to objective optimisation using a morphometric segmentation function, and the map is readily available for general–purpose studies. A cluster analysis of slope units properties, compared with terrain elevation, slope, drainage density and lithology, confirmed that the terrain partition is geomorphologically sound. We suggest the use of the slope unit map for different terrain zonations, including landslide susceptibility modelling, hydrological and erosion modelling, geo–environmental, ecological, forestry, agriculture and land use/land cover studies requiring the identification of homogeneous terrain domains facing distinct directions

    The role of morphology in the spatial distribution of short-duration rainfall extremes in Italy

    Get PDF
    The dependence of rainfall on elevation has frequently been documented in the scientific literature and may be relevant in Italy, due to the high degree of geographical and morphological heterogeneity of the country. However, a detailed analysis of the spatial variability of short-duration annual maximum rainfall depths and their connection to the landforms does not exist. Using a new, comprehensive and position-corrected rainfall extreme dataset (I2-RED, the Improved Italian-Rainfall Extreme Dataset), we present a systematic study of the relationship between geomorphological forms and the average annual maxima (index rainfall) across the whole of Italy. We first investigated the dependence of sub-daily rainfall depths on elevation and other landscape indices through univariate and multivariate linear regressions. The results of the national-scale regression analysis did not confirm the assumption of elevation being the sole driver of the variability of the index rainfall. The inclusion of longitude, latitude, distance from the coastline, morphological obstructions and mean annual rainfall contributes to the explanation of a larger percentage of the variance, even though this was in different ways for different durations (1 to 24 h). After analyzing the spatial variability of the regression residuals, we repeated the analysis on geomorphological subdivisions of Italy. Comparing the results of the best multivariate regression models with univariate regressions applied to small areas, deriving from morphological subdivisions, we found that “local” rainfall–topography relationships outperformed the country-wide multiple regressions, offered a uniform error spatial distribution and allowed the effect of morphology on rainfall extremes to be better reproduced

    Preparing first-time slope failures hazard maps: from pixel-based to slope unit-based

    Get PDF
    In this work, we present a novel quantitative geographical information system-based procedure to obtain the magnitude (area) and frequency of medium to large first-time shallow slope failures. The procedure has been set up at the Barcedana Valley, in the Tremp Basin (Eastern Pyrenees). First, pixel-based susceptibility classes were defined using a slope stability index obtained with the physically based model SINMAP. The frequency calculated from the number of first-time failures recorded during the last 60 years was then assigned to each susceptibility class. We devised a procedure to estimate the size of potential failures by means of the aggregation of pixels within the boundaries of morphological slope units, optimized for the purpose. Finally, the landslide hazard was prepared using the magnitude-frequency matrix. Results show that a proper pixel clustering has been carried which avoids the generation of small groups of pixels with different susceptibility degrees within the same slope unit. For a given hill slope, the area of the cluster of pixels depends on the size of the slope unit, which is not unique as it depends on the criterion used to delineate them. Therefore, the latter is a key factor in the final results. In this study, we validated our results with the size distribution of the observed landslides. The methodology presented in this work can be applied using any susceptibility assessment method with a pixel-based output.Peer ReviewedPostprint (published version

    Geomorphometry 2020. Conference Proceedings

    Get PDF
    Geomorphometry is the science of quantitative land surface analysis. It gathers various mathematical, statistical and image processing techniques to quantify morphological, hydrological, ecological and other aspects of a land surface. Common synonyms for geomorphometry are geomorphological analysis, terrain morphometry or terrain analysis and land surface analysis. The typical input to geomorphometric analysis is a square-grid representation of the land surface: a digital elevation (or land surface) model. The first Geomorphometry conference dates back to 2009 and it took place in Zürich, Switzerland. Subsequent events were in Redlands (California), Nánjīng (China), Poznan (Poland) and Boulder (Colorado), at about two years intervals. The International Society for Geomorphometry (ISG) and the Organizing Committee scheduled the sixth Geomorphometry conference in Perugia, Italy, June 2020. Worldwide safety measures dictated the event could not be held in presence, and we excluded the possibility to hold the conference remotely. Thus, we postponed the event by one year - it will be organized in June 2021, in Perugia, hosted by the Research Institute for Geo-Hydrological Protection of the Italian National Research Council (CNR IRPI) and the Department of Physics and Geology of the University of Perugia. One of the reasons why we postponed the conference, instead of canceling, was the encouraging number of submitted abstracts. Abstracts are actually short papers consisting of four pages, including figures and references, and they were peer-reviewed by the Scientific Committee of the conference. This book is a collection of the contributions revised by the authors after peer review. We grouped them in seven classes, as follows: • Data and methods (13 abstracts) • Geoheritage (6 abstracts) • Glacial processes (4 abstracts) • LIDAR and high resolution data (8 abstracts) • Morphotectonics (8 abstracts) • Natural hazards (12 abstracts) • Soil erosion and fluvial processes (16 abstracts) The 67 abstracts represent 80% of the initial contributions. The remaining ones were either not accepted after peer review or withdrawn by their Authors. Most of the contributions contain original material, and an extended version of a subset of them will be included in a special issue of a regular journal publication

    Geotechnics for rockfall assessment in the volcanic island of Gran Canaria (Canary Islands, Spain)

    Get PDF
    The island of Gran Canaria (Canary Islands, Spain) is characterized by a large variability of volcanic rocks reflecting its volcanic evolution. The geological map provided by Geological Survey of Spain at 1:25.000 scale shows more than 109 different lithologies and it is too complex for environmental and engineering purposes. This work presents a simplified geotechnical map with a small number of classes grouping up units with similar geotechnical behaviours. The lithologies were grouped using about 350 rock samples, collected in the seven major islands of the Archipelago. The geotechnical map was used to model rockfall hazard in the entire island of Gran Canaria, where rockfalls are an important threat. The rockfall map was validated with 128 rockfall events along the GC-200 road, located in the NW sector of Gran Canaria. About 96% of the events occurred along sections of the road where the number of expected trajectories is high or moderate.This work was carried out in the framework of two projects funded by the European Commission, Directorate-General Humanitarian Aid and Civil Protection (ECHO): SAFETY (Sentinel-1 for geohazard prevention and forecasting. Ref. ECHO/SUB/2015/718679/Prev02) and U-GEOHAZ (Geohazard Impact Assessment for Urban Areas. Grant Agreement No. 783169). This work has been partly funded by the University of Alicante in the framework of Quality Improvement Grant of PhD Program in Materials, Structures and Soil Engineering: Sustainable Construction, Salvador de Madariaga Mobility Program from the Spanish Ministry of Science (PRX18/00020) and the Industrial PhD Project GEODRON (IND2017/AMB-7789). We also appreciate the contribution of the MACASTAB project (Ref.: MAC/3.5b/027). The laboratory tests were carried out in the Laboratories of Building and Public Works from the Canarian Government. The methodology is also developed in the framework of the RISKCOAST project (Ref: SOE3/P4/E0868) funded by the European Regional Development Fund - Interreg programme (3rd call for proposals)
    corecore